NASA CR-173,254

A Reproduced Copy OF

NASA CR-173,254

Reproduced for NASA by the
NASA Scientific and Technical Information Facility

David L. Whitfield Department of Aerospace Engineering Mississippi State University Mississippi State, MS 39762

FOREWARD

This research was sponsored by the NASA Langley Research Centex under Grant NASA NAG-1-226 with Dr. Frank Thames as Techndeal Monitor, and the United States Alr Force, Eglin Air Force Base, Plorde under Grant R08635-82-K-0409 wich Dr. Larxy Lijewski as Tecmical officer. The support of NASA and the Air force, as well as rechnical foreractions with Drs. Thames and Lijewski, is gxatefully acknowledged.
A method for numericaily solving the three-dimensional unsteady Euler equations using fiux veetur splitting is developed. The equations are cast in curvilinear coordinates and a finite volume discretization is used. At explicit upwind second-order predictor-corrector scheme Is used to solve the discrecized equations. The scheme is stable for a CFL number of 2 and local time stepping ia used to accelerate convergence for steady-state problems. Characteristic variable boundary conditions are developed and used in the far field and at surfaces. No additional. dissiparion terms are included in the scheme. Numerical results are compared with results from an existing three-dimensional Eulex code and expeximental daca.

I. INTRODUCTION

In support of NASA's interest in the use of prop-fans as a propulsion device, a computaztonal method was recently developed for numerically solving the flowfield about a swept, tapered, supercritical wing with a propellex producing thrust and swirl (Ref. 1). The equations solved were essentially Euler equarions with body force terms included to simulate the propeller. The Euler solver used was an extension of the method of Jameson, et. al. (Refs. 2 and 3) referred to as FLo5\%. Although good agreenent was obtained with experimental data (Ref. 1), some difficulty in convergence, parifcularly the energy equation, was encountered ustng the FLOS7 central-difference scheme. Recently, convergence difficulties were also repored by Swafford (Ref. 4) in solving a set of hyperbolic equations with source terms (which can be consfdered similar to the force terms included in the Euler equations in Ref. 1) using a similar central-difference scheme. An upwind scheme eliminated the convergence problems in Ref. 4. Moreover, any addirional smoothing added to the upwind scheme was found to be detrimental with regard to convergence. (Additional smoothing was found to always be necessary in using the central-difference scheme in Ref. 4.) Therefore, it seemed appropriate to consider an upwind scheme for salving the threedimensional Euler equations.

The flux-vector-split form of the equations used is developed in the following section. The motivation and background of using splitting is given in the literature (see, for example, Steger and Warming (Ref, 5)) and is not repeated here. Moreover, many of the matrices needed are given in the literature (see Refs. 6 and 7); however, all equations
and matrices needed are developed and included in Section II for clarity and completeness. Formulation of the equations for numerical solution and the algorithm used to solve the discretized equations are discussed in Section III In the farfield and at surfaces are developed in Section IV. Numerical resules, including compaxisons with FL057 solutions and experimental data, are presented and discussed in Section V.
origivel pise 8 of poor qualiry
II. SPLITTING

The conservation law vector form of the sway equations in Cartesian coordinates x, y, and z are

$$
\begin{equation*}
\frac{\partial \bar{q}}{\partial t}+\frac{\partial \xi}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial h}{\partial z}=0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{q}=[\rho, \rho u, \rho v, \rho w, e]^{T} \\
& f=\left[\rho u, \rho u^{2}+p, \rho u v, \rho u w, u(e+\rho)\right]^{T} \\
& g=\left[\rho v, \rho u v, \rho v^{2}+p, \rho v w, v(e+\rho)\right]^{T} \\
& h=\left[\rho v, \rho u w, \rho v w, \rho w^{2}+p, w(e+p)\right]^{T} \\
& p=(\gamma-1)\left[e-\frac{2}{2} \rho\left(u^{2}+v^{2}+w^{2}\right)\right]
\end{aligned}
$$

Using curvilinear coordinates defined as

$$
\begin{aligned}
& \xi=\zeta(x, y, z) \\
& \eta=\eta(x, y, z) \\
& \zeta=\zeta(x, y, z) \\
& \tau=t
\end{aligned}
$$

it is straightforward to transform Eq. (2.1) to

$$
\begin{equation*}
\frac{\partial Q}{\partial \tau}+\frac{\partial F}{\partial \xi}+\frac{\partial G}{\partial \eta}+\frac{\partial H}{\partial \zeta}=0 \tag{2.2}
\end{equation*}
$$

where

$$
Q=J[\rho, \rho u, \rho \vartheta, \rho w, e]^{T}
$$

$$
\begin{aligned}
& F=J\left[\rho U, \rho U U+\xi_{x} p, \rho v U+\xi_{y} p, \rho w U+\xi_{z} p, U(e+p)\right]^{T} \\
& G=J\left[\rho v, \rho u V+n_{x} p, \rho v V+\eta_{y} p, \rho w v+n_{z} p, v(e+p)\right]^{T} \\
& H=J\left(\rho W, \rho u W+\zeta_{x} p, \rho v W+\zeta_{y} p, \rho w W+\zeta_{z} p, W(e+p)\right\}^{T} \\
& J=x_{\zeta}\left(y_{n} z_{\zeta}-z_{n} y_{\zeta}\right)-y_{\xi}\left(x_{n} z_{\zeta}-z_{n} x_{\zeta}\right)+z_{\xi}\left(x_{n} y_{\zeta}-y_{n} x_{\zeta} y\right. \\
& \xi_{x}=J^{-1}\left(y_{n} z_{\zeta}-z_{n} y_{\zeta}\right) \\
& n_{x}=J^{-1}\left(z_{\xi} y_{\zeta}-y_{\xi} z_{\zeta}\right) \\
& \zeta_{x}=J^{-1}\left(y_{\xi} z_{n}-z_{\xi} y_{n}\right) \\
& \xi_{y}=J^{-1}\left(z_{n} x_{\zeta}-x_{n} z_{\zeta}\right) \\
& \eta_{y}=J^{-1}\left(x_{\xi} z_{\zeta}-z_{\xi_{\zeta}}{ }_{\zeta}\right) \\
& \zeta_{y}=J^{-1}\left(z_{\xi} x_{n}-x_{\xi} z_{n}\right) \\
& \xi_{z}=J^{-1}\left(x_{n} y_{\zeta}-y_{n} x_{\zeta}\right) \\
& n_{z}=J^{-1}\left(y_{\xi}^{z}{ }_{\zeta}-x_{\xi} y_{\zeta}\right) \\
& \zeta_{z}=J^{-1}\left(x_{\xi} y_{\eta}-y_{\xi} x_{n}\right) \\
& U=\xi_{x} u+\xi_{y} v+\xi_{z}{ }^{w} \\
& \mathrm{~V}=\eta_{\mathrm{x}}^{\mathrm{u}}+\mathrm{n}_{\mathrm{y}}^{\mathrm{v}}+\mathrm{n}_{\mathrm{z}}^{\mathrm{w}} \\
& W=\zeta_{\mathrm{x}} \mathrm{u}+\zeta_{\mathrm{y}} \mathrm{v}+\zeta_{z^{W}} \\
& \text { ORETUAL FFGE R } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

The strong consexvation law of the Euler equations in curvilinear coordinates (Eq. (2.2)) can be written in the quasilinear form

$$
\begin{equation*}
\frac{\partial Q}{\partial \tau}+A \frac{\partial Q}{\partial \xi}+B \frac{\partial \Omega}{\partial \eta}+C \frac{\partial Q}{\partial \zeta}=0 \tag{2.3}
\end{equation*}
$$

where the matrices A, B, and C are given by

$$
\begin{aligned}
& A=\frac{\partial F}{\partial Q} \\
& B=\frac{\partial G}{\partial Q} \\
& C=\frac{\partial H}{\partial Q}
\end{aligned}
$$

 OF POOR QUALITY

Carrying out these operations, one obtains a matrig

$$
\begin{align*}
& \ddot{K}=\left[\begin{array}{lll}
0 & k_{x} & k_{y} \\
k_{x} \phi-u \theta_{k} & k_{x}(2-\gamma) u+\theta_{k} & k_{y}-k_{x}(\gamma-1) v \\
k_{y} \phi-v \theta_{k} & k_{x} v-k_{y}(\gamma-1) u & k_{y}(2-\gamma) v+\theta_{k} \\
k_{z} \phi-w \theta_{k} & k_{x} w-k_{z}(\gamma-1) u & k_{y} w-k_{z}(\gamma-1) v \\
\left(2 \phi-\frac{\gamma e^{\prime}}{\rho}\right) \theta_{k} & k_{x}\left(\frac{\gamma e}{\rho}-\phi\right)-(\gamma-1) u \theta_{k} & k_{y}\left(\frac{\gamma e}{\rho}-\phi\right)-(\gamma-1) v \theta_{k}
\end{array}\right. \\
& k_{z} \\
& k_{z} u-k_{x}(\gamma-1) w \quad k_{x}(\gamma-1) \\
& k_{z} v-k_{y}(\gamma-1) w \quad k_{y}(\gamma-1) \tag{2.4}\\
& k_{z}(2-\gamma) w+\theta_{k} \quad k_{z}(\gamma-1) \\
& \left.k_{z}\left(\frac{\gamma e}{\rho}-\phi\right)-(\gamma-1){ }^{w \theta_{k}} \quad \gamma \theta_{k} \quad\right]
\end{align*}
$$

where

$$
\begin{aligned}
& \phi=\frac{\gamma-1}{2}\left(u^{2}+v^{2}+w^{2}\right) \\
& \theta_{k}=k_{x} u+k_{y} v+k_{z} w
\end{aligned}
$$

and matrices A, B, and C are given by the matxix \mathbb{K} depending on whether
k in Eq. (2.4) is $\xi_{g} n_{2}$ or ζ. That is
 OF POOR QUALITY

$$
\begin{array}{ll}
\overline{\mathrm{K}}=\mathrm{A} & \text { for } \mathrm{k}=\xi \\
\overline{\mathrm{K}}=\mathrm{B} & \text { for } \mathrm{k}=\eta \tag{2.5}\\
\overline{\mathrm{K}}=\mathrm{C} & \text { for } \mathrm{k}=\zeta
\end{array}
$$

The efgensystem of the matrices A, B, and C is important to achieve :he Intented splitting. However, there are few zero elements in Eq. (‥4) and the eigenvalues of A, B, and C are difficult to determine using Eq. (2.4) directly. Hence, consider the nonconservative vector form of the Euler equations in curvilinear coordinates

$$
\begin{equation*}
\frac{\partial q}{\partial r}+a \frac{\partial q}{\partial \xi}+b \frac{\partial q}{\partial \eta}+c \frac{\partial q}{\partial \zeta}=0 \tag{2.6}
\end{equation*}
$$

where

$$
q=J[\rho, u, v, w, p]^{T}
$$

Note that Eq. (2.3) can be written as

$$
\begin{equation*}
\mathrm{M} \frac{\partial q}{\partial \tau}+\mathrm{AM} \frac{\partial q}{\partial \xi}+\mathrm{BM} \frac{\partial q}{\partial \eta}+\mathrm{CM} \frac{\partial q}{\partial \zeta}=0 \tag{2.7}
\end{equation*}
$$

where M is the matrix $\frac{\partial Q}{\partial q}$. Multiply Eq. (2.7) on the left by M^{-1} co obtain

$$
I \frac{\partial q}{\partial \tau}+M^{-1} A M \frac{\partial q}{\partial \xi}+M^{-1} B M \frac{\partial q}{\partial \eta}+M^{-1} C M \frac{\partial G}{\partial \zeta}=0
$$

where I ts the Identity matrix. Then from Eqs. (2.6) and (2.7)

$$
\begin{align*}
& a=M^{-1} A M \\
& b=M^{-1} B M \tag{2.8}\\
& c=M^{-1} C M
\end{align*}
$$

mandmanay
OF POOR Qusernd

Therefore, the matrix a is similar to A, b is similar to B, and c is similar to C. Because similar matrices have the same eigenvalues (Ref. 8), the eigenvalues of A, B, and C are known by determining the eigenvalues of a, wand e The matrices a, b, and c are more simple to handle than matrices A, B, and C because they contain several zero elements as shown below.

The matrices a, b, and c are now determined. The matrix M gi on by $\frac{\partial Q}{\partial q}$ is

$$
M=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \tag{2.9}\\
u & \rho & 0 & 0 & 0 \\
v & 0 & \rho & 0 & 0 \\
v & 0 & 0 & 0 & 0 \\
\frac{\phi}{\gamma-1} & p u & \rho v & \rho W & \frac{1}{\gamma-1}
\end{array}\right]
$$

The inverse of this matrix is

$$
M^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \tag{2.10}\\
-\frac{u}{\rho} & \frac{1}{\rho} & 0 & 0 & 0 \\
-\frac{v}{\rho} & 0 & \frac{1}{\rho} & 0 & 0 \\
-\frac{w}{\rho} & 0 & 0 & \frac{1}{\rho} & 0 \\
\phi & -u(\gamma-1) & -v(\gamma-1) & -w(\gamma-1) & (\gamma-1)
\end{array}\right]
$$

ORGRNA PACR IS OF POOR QUALITY

Then by Eqs. (2.8) the matrices a, b, and c are given by

$$
k=\left[\begin{array}{ccccc}
\theta_{k} & \rho k_{x} & \rho k_{y} & \rho k_{z} & 0 \tag{2.11}\\
0 & \theta_{k} & 0 & 0 & \frac{k_{x}}{\rho} \\
0 & 0 & \theta_{k} & 0 & \frac{k_{y}}{\rho} \\
0 & 0 & 0 & \theta_{k} & \frac{k_{z}}{\rho} \\
0 & k_{x} \rho c^{2} & k_{y} \rho c^{2} & k_{z} \rho c^{2} & \theta_{k}
\end{array}\right]
$$

where

$$
\begin{align*}
& k=a \quad \text { for } k=\xi \\
& k=b \quad \text { for } k=\eta \tag{2.12}\\
& k=c \quad \text { for } k=\zeta
\end{align*}
$$

The c in the ρc^{2} cexms in Eq. (2.11) is che speed of somn and is not to be confused with the matrixs c. The ϕ appearing in Eqs. (2.9) and (2.10) is again

$$
\phi=\frac{\gamma-1}{2}\left(u^{2}+v^{2}+w^{2}\right)
$$

just as \ln Eqs. (2.4).
From Eq. (2.11) the eigenvalues of matrices a, b, and c axe easily detexmined. The eigenvalues are

$$
\begin{align*}
& \lambda_{k}^{1}=\lambda_{k}^{2}=\lambda_{k}^{3}=k_{2} u+k_{y} v+k_{z} w=\theta_{k} \\
& \lambda_{k}^{4}=\theta_{k}+c|\nabla k| \tag{2.13}\\
& \lambda_{k}^{5}=\theta_{k}-c|\nabla k|
\end{align*}
$$

ORTGinal pisee in
 OF POOR QUALITY

where $\lambda_{k}^{1}, \lambda_{k}^{2}, \lambda_{k}^{3}, \lambda_{k}^{4}$, and λ_{k}^{5} are the eigenvalues of a for $k=\xi$, b for $k=\eta$, and c for $k=\zeta$. Correspondingly, the eigenvectors are

$$
\begin{align*}
& x_{1}=\left[\tilde{k}_{x}, 0, \tilde{k}_{z},-\tilde{k}_{y}, 0\right]^{T} \\
& x_{2}=\left[\tilde{k}_{y},-\tilde{k}_{z}, 0, \tilde{k}_{x}, 0\right]^{T} \\
& x_{3}=\left[\tilde{k}_{z}, \tilde{k}_{y},-\tilde{k}_{x}, 0, n\right]^{T} \tag{2.14}\\
& x_{4}=\frac{1}{\sqrt{2}}\left[\frac{\rho}{c}, \tilde{k}_{x}, \tilde{k}_{y}, \tilde{k}_{z}, \rho c\right]^{T} \\
& x_{5}=\frac{1}{\sqrt{2}}\left[\frac{\rho}{c},-\tilde{k}_{x},-\tilde{k}_{y},-\tilde{k}_{z}, \rho c\right]^{\because}
\end{align*}
$$

where

$$
\begin{aligned}
& \tilde{k}_{x}=\frac{k_{y}}{|\nabla k|}=\frac{k_{x}}{\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)^{\frac{7}{2}}} \\
& \tilde{k_{y}}=\frac{k_{y}}{|\nabla k|}
\end{aligned}
$$

$$
\tilde{k}_{z}=\frac{\mathbf{k}_{z}}{\mid \nabla k T}
$$

Sufficient equations have now been developed to carry out the splitting. The integral conservation law form of the Euler equations will be formulated and discretized for numerical solution in the following section. This formulation requires evaluation of the vectors F, G, and H at faces of the finite volumes. By splitting the vectors F, G, and H into the sum of separate vectors, each having an eigenvalue as a coefficient, the evaluation of each separate vector by extrapolating from the appropriate direction indtcated by the sign of its elgenvalue can be carried out.

OFMu4. Fat?
 of pOOR QuAdry

The vectors F, G, and H are homogeneous functions of degree one in Q; therefore, by Euler's Theorem (Ref. 9)

$$
\begin{equation*}
\mathrm{K}=\overline{\mathrm{K}} \mathrm{Q} \tag{2.16}
\end{equation*}
$$

where $K=F$ and $\bar{K}=A$ for $k=\xi, K=G$ and $\bar{K}=B$ fox $k=\eta$, and $\mathrm{K}=\mathrm{H}$ and $\overline{\mathrm{K}}=\mathrm{C}$ for $\mathrm{k}=\zeta$. The matrices $\overline{\mathrm{K}}$ can be written

$$
\begin{equation*}
\bar{K}=T_{k} \Lambda_{k} T_{k}^{-1} \tag{2.17}
\end{equation*}
$$

where Λ_{k} is the diagonal matrix whose diagonal element axe the eigenvalues of k ($c x$, also, \bar{K}) given by Eq. (2.13) The matrices k given by Eq. (2.12) can be writtan

$$
\begin{equation*}
\kappa=p_{k} \Lambda_{k} p_{k}^{-1} \tag{2,18}
\end{equation*}
$$

where the columns of P_{k} are the e.gennectors of κ corresponding to the respective eigenvalues. From Eqs. (2.8)

$$
\begin{equation*}
\overline{\mathrm{K}}=\mathrm{MKM}^{-1} \tag{2.19}
\end{equation*}
$$

Using Eq. (2.18) in Eq. (2.19)

$$
\begin{equation*}
\bar{K}=M P_{k} \Lambda_{k} \mathrm{P}_{\mathrm{k}}^{-1} \mathrm{M}^{-1} \tag{2.2n}
\end{equation*}
$$

Then from Eqs. (2.17) and (2.20)

$$
\begin{align*}
T_{k} & =M_{k} \tag{2.21a}\\
T_{k}^{-1} & =P_{k}^{-1} M^{-1} \tag{2.21~b}
\end{align*}
$$

The matrices M and M^{-1} are given by Eqs. (2.9) and (2.10). The matrix P_{k} is

ORIGNAR PRES I OF POOR QUALM

$$
P_{k}=\left[\begin{array}{ccccc}
\dot{k}_{x} & \dot{k}_{y} & \dot{k}_{z} & \alpha & \alpha \tag{2.22}\\
0 & -\dot{k}_{z} & \dot{k}_{y} & \frac{\tilde{k}_{x}}{\sqrt{2}} & -\frac{\dot{k}_{x}}{\sqrt{2}} \\
\tilde{k}_{z} & 0 & -\tilde{k}_{x} & \frac{\tilde{k}_{y}}{\sqrt{2}} & -\frac{\dot{k}_{y}}{\sqrt{2}} \\
-\tilde{k}_{y} & \tilde{k}_{x} & 0 & \frac{\dot{k}_{z}}{\sqrt{2}} & -\frac{\dot{k}_{z}}{\sqrt{2}} \\
0 & 0 & 0 & \alpha c^{2} & \alpha c^{2}
\end{array}\right]
$$

where

$$
\alpha=\frac{0}{\sqrt{2} c}
$$

Rather than invert P_{k} directly, the matrix P_{k}^{m} can be determined easily from the left eigenvectors of k. She left eigenvectors of are the rows of $\mathrm{P}_{\mathrm{k}}^{-\lambda}$, Le.
where

 OF POOR QIIALITY$$
\beta=\frac{1}{\sqrt{2} p e}
$$

The matrices T_{k} and T_{k}^{-1} can now be determined using Eqs. (2.21). These matrices are

$$
\begin{align*}
& T_{k}=\left[\begin{array}{lll}
\tilde{k}_{x} & \tilde{k}_{y} & \tilde{k}_{z} \\
u \tilde{k}_{x} & u \tilde{k}_{y}-\rho \tilde{k}_{z} & u \tilde{k}_{z}+\rho \tilde{k}_{y} \\
v \tilde{k}_{x}+\rho \tilde{k}_{z} & v \tilde{k}_{z}-\rho \tilde{k}_{x} \\
w \tilde{k}_{x}-\rho \tilde{k}_{y} & v \tilde{k}_{y}+\rho \tilde{k}_{x} & \tilde{k}_{z} \\
\frac{\phi}{\gamma-1} \tilde{k}_{x}+\rho\left(v \tilde{k}_{z}-w k_{y}\right) & \frac{\phi}{\gamma-1} \tilde{k}_{y}+\rho\left(w \tilde{k}_{z}-u \tilde{k}_{z}\right) \frac{\phi}{\gamma-1} \tilde{k}_{z}+\rho\left(u \tilde{k}_{y}-v \tilde{k}_{x}\right)
\end{array}\right. \\
& \alpha \\
& \alpha\left(u+c \tilde{k}_{x}\right) \quad \alpha\left(u-c \tilde{k}_{x}\right) \\
& \alpha\left(v+c \tilde{k}_{y}\right) \quad \alpha\left(v-c \tilde{k}_{y}\right) \tag{2.24a}\\
& \alpha\left(w+c \bar{k}_{z}\right) \quad \alpha\left(w-c \bar{k}_{p}\right) \\
& \alpha\left(\frac{\phi+c^{2}}{\gamma-1}+c \tilde{\theta}_{k}\right) \quad \alpha\left(\frac{\phi+c^{2}}{\gamma-1}-c \tilde{c}_{k}\right)
\end{align*}
$$

originh pace is of POOR QUALITY

$$
\begin{aligned}
& \text { Tr }
\end{aligned}
$$

where.

$$
\begin{aligned}
& \phi=\frac{\gamma-1}{2}\left(u^{2}+v^{2}+w^{2}\right) \\
& \dot{\theta}_{k}=\tilde{k}_{x} u+\tilde{k}_{y} v+\tilde{k}_{z} w \\
& \alpha=\frac{\rho}{\sqrt{2} c} \\
& \beta=\frac{1}{\sqrt{2} \rho c}
\end{aligned}
$$

Using Eqs. (2.16) and (2.17)

$$
\begin{equation*}
K=T_{k} \Lambda_{k} T_{k}^{-1} Q \tag{2.25}
\end{equation*}
$$

$$
\Lambda_{k}=\left[\begin{array}{ccccc}
\lambda_{k}^{1} & 0 & 0 & 0 & 0 \tag{2.26}\\
0 & \lambda_{k}^{2} & 0 & 0 & 0 \\
0 & 0 & \lambda_{k}^{3} & 0 & 0 \\
0 & 0 & 0 & \lambda_{k}^{4} & 0 \\
0 & 0 & 0 & 0 & n_{k}^{s}
\end{array}\right]
$$

can be writcen

$$
\begin{equation*}
\Lambda_{k}=\lambda_{k}^{1} I_{1,2,3}+\lambda_{k}^{4} I_{4}+\lambda_{6}^{x_{k}} I_{5} \tag{2.27}
\end{equation*}
$$

where $I_{1,2,3}$ is a matrix which has unity as the Etrst three diagonal elements and all other elcments zero, x_{4} has undey as the fourth diagonal alement and all other elenents zero, and I_{5} mas unity as the fifth diagonal element and all orher elements zero. Nare that only three terms are needed on the right hand side of Eq. (2.27) instead of five because the first three eigenvalues are the sume as shown by Eqs. (2.13). Using Eqs. (2.25) and (2.27), the split form of K is

$$
\begin{equation*}
K=\lambda_{k}^{1} T_{k} I_{1,2,3} T_{k}^{-1} Q+\lambda_{k}^{4} T_{k} I_{4} T_{k}^{-1} Q+\lambda_{k} T_{k} I_{5} T_{k}^{-1} Q \tag{2.28}
\end{equation*}
$$

or

$$
k=k_{1}+k_{2}+k_{3}
$$

where

$$
\begin{aligned}
& Q_{k} \lambda_{k}^{1} T_{k} I_{1,2,3} T_{k}^{-1} Q \\
& K_{2}=\lambda_{k}^{4} T_{k} I_{4} T_{k}^{-1} Q \\
& K_{3}=\lambda_{k}^{4} T_{k} I_{5} T_{k}^{-1} Q
\end{aligned}
$$

Everything is now available to carry out these operations and determine the split form of the vector K. The operations described by Eq. (2.28) give

$$
\begin{equation*}
K=k_{1}+K_{2}+k_{3} \tag{2.29}
\end{equation*}
$$

where

$$
\left.\begin{array}{c}
K=F \text { for } k=\xi \\
K=G \text { for } k=\eta \\
K=H \text { for } k=\zeta \\
K_{1}=\lambda_{k}^{1} J \frac{\gamma-1}{\gamma}\left[\begin{array}{l}
\rho \\
\rho v \\
\rho w
\end{array}\right]
\end{array}\right]
$$

$$
\begin{aligned}
& \text { ORIGRNAL PACE ES } \\
& \text { OF POOR QUALIT } \\
& \rho \\
& w n+\rho c \tilde{k}_{x} \\
& k_{2}=\lambda_{k}^{4} \frac{J}{2 \gamma} \quad \rho v+\rho c \tilde{k}_{y} \\
& \rho w+\rho c \tilde{k}_{z} \\
& e+p+\rho c \tilde{\theta}_{k} \\
& K_{3}=\lambda_{k}^{5} \frac{J}{2 \gamma}\left[\begin{array}{l}
\rho \\
\rho u-\rho c \tilde{k}_{x} \\
\rho v-\rho c \tilde{k}_{y} \\
\rho \omega-\rho c \tilde{k}_{z} \\
e+p-\rho c \tilde{\theta}_{i c}
\end{array}\right] \\
& \lambda_{k}^{1}=\lambda_{k}^{2}=\lambda_{k}^{3}=k_{x} u+k_{y} v+k_{z} w=0_{k} \\
& \lambda_{k}^{4}=\theta_{k}+c|\nabla k| \\
& \lambda_{k}^{5}=\theta_{k}-c|\nabla k| \\
& |\nabla k|=\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)^{1 / 2} \\
& \tilde{k}_{i}=\frac{k_{i}}{|\nabla k|} \\
& \tilde{\theta}_{k}=\tilde{k}_{x} u+\tilde{k}_{y} v+\tilde{k}_{z} w
\end{aligned}
$$

This is the same form of the equations as presented by Reklis and Thomas (Ref. 10).

ORIGINAL FRGE ig
ILI. ALGORITHM of poon quality

The discretized integral form of Eq. (2.2) in computational space for a cell with center denoted as i, j, k is (see, for example, Ref. 11)

$$
\begin{gather*}
\frac{\Delta Q}{\Delta r} \Delta \xi \Delta n \Delta \zeta+\left(F_{j+1 / 2}-F_{i-\frac{1}{2}}\right) \Delta n \Delta \zeta+\left(G_{j+\frac{1}{2}}-G_{j-\frac{1}{2}}\right) \Delta \xi \Delta \zeta \\
+\left(H_{k+\frac{1}{2}}-H_{k-\frac{1}{2}}\right) \Delta \xi \Delta n=0 \tag{3.1}
\end{gather*}
$$

or

$$
\begin{equation*}
\frac{\Delta Q}{\Delta T}+\frac{\delta \mathrm{F}_{i}}{\Delta \xi}+\frac{\delta \mathrm{G}}{\Delta \eta}+\frac{\delta \mathrm{H}_{\mathrm{k}}}{\Delta \xi}=0 \tag{3.2}
\end{equation*}
$$

The central difference operator notation in Eq. (3.2) indicates the flux vectors are evaluated at cell faces in this finite volune formulation as fllustrated in Fig. 1.

The numerical scheme used is a finite volume version of the second-order upwind scheme of Warming and Beam (Ref. 12). The present scheme is an extension of that used by Deese (Ref. 13) for twodimensional flow. To dilustrate this scheme consider the simple model equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial F(u)}{\partial x}=0 \tag{3.3}
\end{equation*}
$$

where $F(u)=a u$; and a is a constant taken as greater than aero for illustration. The second-order upwind scheme of Warming and Beam Is

$$
\begin{equation*}
\bar{u}_{i}^{\mathrm{n}+1}=\mathrm{u}_{1}^{\mathrm{n}}-\Delta t \frac{\nabla F_{i}^{n}}{\Delta x} \tag{3.4a}
\end{equation*}
$$

$$
\begin{gather*}
\text { ORIGNAL PRES Fis } \\
\text { OF POOR QUALTV } \\
u_{i}^{n+1}=\frac{1}{2}\left(u_{i}^{n}+u_{i}^{n+1}\right)-\frac{\Delta t}{2} \frac{\nabla^{2} F_{1}^{n}}{\Delta x}-\frac{\Delta t}{2} \frac{\nabla \bar{F}_{i}^{n+1}}{\Delta x} \tag{3.4b}
\end{gather*}
$$

where

$$
W_{i}^{n}=\hat{N}_{i}^{n}-F_{i-1}^{n}=F\left(u_{i}^{n}\right)-F\left(u_{i-1}^{n}\right)
$$

and

$$
\bar{F}_{i}^{n+1}=F\left(\bar{u}_{i}^{n+1}\right)
$$

The finite volume form of Eq. (3.3) corresponding to Eq. (3.2) is

$$
\begin{equation*}
\frac{\Delta u}{\Delta t}+\frac{\delta F_{i}}{\Delta x}=0 \tag{3.5}
\end{equation*}
$$

By using the one-point upwind extrapolations, u_{i} for $u_{i+\frac{1}{2}}$ and u_{i-1} for $u_{i-1 / 2}$, the predictor step for Eq. (3.5) is

$$
\begin{equation*}
\bar{u}_{i}^{n+1}=u_{i}^{n}-\frac{a \Delta t}{\Delta x}\left(u_{i}^{n}-u_{i-1}^{n}\right)=u_{i}^{n}-\Delta r \frac{\nabla F_{i}^{n}}{\Delta x} \tag{3.6}
\end{equation*}
$$

which is the same as Eq. (3.4a). By using the rwo-point upwind extrapolations, $2 u_{i}-u_{i-1}$ for $u_{i+\frac{1}{2}}$ and $2 u_{i-1}-u_{i-2}$ for $u_{i-\frac{1}{2}}$, the Finfte volume corrector step is

$$
u_{i}^{n+1}=u_{i}^{n}-\frac{a \Delta t}{2 \Delta x}\left[\left(2 u_{i}^{n}-u_{i-1}^{n}\right)-\left(2 u_{i-1}^{n}-u_{i-2}^{n}\right)+\left(u_{i}^{n+1}-\bar{u}_{i-1}^{-n+1}\right)\right]
$$

or

$$
\begin{equation*}
u_{i}^{n}+1=u_{i}^{n}-\frac{a \Delta t}{2 \Delta x}\left[\left(u_{i}^{n}-2 u_{i-1}^{n}+u_{i-2}^{n}\right)+\left(u_{i}^{n}-u_{i-1}^{n}\right)\right]-\frac{\Delta t}{2} \frac{\nabla F_{i}^{n+1}}{\Delta x} \tag{3.7}
\end{equation*}
$$

Using Eq. (3.4a), Eq. (3.7) can be written

$$
\begin{equation*}
u_{i}^{n+1}=\frac{1}{2}\left(u_{i}^{n}+u_{i}^{n+1}\right)-\frac{\Delta t}{2} \frac{\nabla^{2} F_{i}^{n}}{\Delta x}-\frac{\Delta t}{2} \frac{\nabla F^{n+1}}{\Delta x} \tag{3.8}
\end{equation*}
$$

ORIGINAL PRNE RET OF POOR QUALITE.
which is the same form as Warming and Beam's corrector step given by Eq. (3.4b). The stability, dissipation, and dispersion analyses of Ref. 12, wamere, are applicable to the present finite volume scheme. In addition, it is not difficult to show that this scheme is also conslstent.

The scheme for the complete three-dimenstonal unsteady equation 18:

Predictor:

$$
\begin{align*}
\bar{Q}_{i, j, k}^{n+1}= & Q_{i, j, k}^{n}-\Delta \tau_{i, j, k} \sum_{\ell=1}^{3}\left[F_{\ell}\left(Q_{i+1, j, j, k}^{n}\right)-F_{\ell}\left(Q_{i-\frac{1}{2}, j, k}^{n}\right)\right. \\
& +G_{\ell}\left(Q_{i, j+\frac{1}{2}, k}^{n}\right)-G_{\ell}\left(Q_{i, j-\frac{1}{2}, k}^{n}\right)+H_{\ell}\left(\tilde{Q}_{i, j, k+\frac{1}{2}}^{n}\right) \\
& \left.-H\left(\tilde{Q}_{i, j, k-\frac{1}{2}}^{n}\right)\right] \tag{3.9}
\end{align*}
$$

Where the subscript $\&$ corresponds to one part of the split vector in Eq. (2.29); and

$$
\begin{aligned}
& \tilde{Q}_{i+\frac{1}{2}, j, k}^{n}=Q_{i, j, k}^{n} \quad \text { if the corresponding } \lambda_{\xi}^{1}, \lambda_{\xi}^{4} \text {, or } \lambda_{\xi}^{5} \text { eigenvalue } \\
& \text { evaluated at } i+\frac{1}{2}, j, f \text { fo }>0 \\
& \tilde{Q}_{j+1 / 2,1, k}^{n}=Q_{i+1, j, k}^{n} \text { if the corresponding } \lambda_{\xi}^{1}, \lambda_{\xi}^{4} \text {; or } \lambda_{\xi}^{5} \text { eigenvalue } \\
& \text { evaluated at } 1 t^{\prime}, \mathrm{j}, \mathrm{k} \mathrm{Is} \leq 0
\end{aligned}
$$

and simflarly for $\tilde{Q}_{i-\frac{1}{2}, j, k}^{n}$ The same $1 s$ done for $\tilde{Q}_{i, j+\frac{1}{2}, k}^{n}$ and $Q_{1, j-\frac{1}{2} ; k}^{n}$ except: $\lambda_{\eta}^{1}, \lambda_{n}^{4}$, and λ_{n}^{5} eigenvalues are interrogated; and simllarly, for $\tilde{Q}_{i, j, k+\frac{1}{2}}^{n}$ and $\tilde{Q}_{i, j, k-\frac{1}{2}}^{n} \operatorname{except} \lambda_{\zeta}^{2}, \lambda_{\zeta}^{4}$, and λ_{ζ}^{5} efgenvalues are interrogated.

$$
\begin{align*}
& Q_{i, j, k}^{n+1}=Q_{i, j, k}^{n}-\frac{\Delta \tau_{i, j, k}}{2} \ell_{\ell=1}^{\sum_{1}\left[F_{\ell}\left(\hat{Q}_{i+\frac{1}{2}, j, k}^{n}\right)\right.}-F_{\ell}\left(\hat{Q}_{i-\frac{1}{2}, j, k}^{n}\right) \\
& +G_{\ell}\left(\hat{Q}_{i, j+\frac{1}{2}, k}^{n}\right)-G_{\ell}\left(\hat{Q}_{i, j-\frac{1}{2}, k}^{n}\right)+H_{\ell}\left(\hat{Q}_{i, h_{3} k+\frac{1}{3}}^{n}\right)-H_{\ell}\left(\hat{Q}_{i, j, k-\frac{1}{2}}^{n}\right) \\
& +F_{\ell}\left(\bar{Q}_{i+1, j, k}^{n+1}\right)-F_{\ell}\left(\tilde{\bar{Q}}_{i-\frac{1}{2}, j, k}^{n+1}\right)+G_{\ell}\left(\tilde{\bar{Q}}_{i, j+1}^{n+1}, k\right)-G_{\ell}\left(\overline{\tilde{Q}}_{i, j-\frac{1}{2}, k}^{n+1}\right) \\
& \left.+H_{\ell}\left(\tilde{\bar{Q}}_{i, j, k+\frac{1}{2}}^{n+1}\right)-H_{\ell}\left(\tilde{\bar{Q}} \tilde{i}_{j, j, k-\frac{1}{2}}^{n+1}\right)\right] \tag{3.10}
\end{align*}
$$

where the $\tilde{\bar{Q}}_{i+\frac{1}{2}, j, k}^{n+1}$ etc, variables are determined in the same way as the $\tilde{Q}_{i+\psi_{2}, j, k}^{n}$, etc, variables as described below Eq. (3.9) except $\bar{Q}_{1, j, k}$, etc, are used in place of $Q_{i, j, k}^{n}$, etc. The $\hat{Q}_{i+1, j, k}^{n}$, etc, are determined by

$$
\begin{aligned}
\hat{Q}_{i+\frac{1}{2}, j, k}^{n}=2 Q_{i, j, k}^{n}-Q_{i-1, j, k}^{n} \quad & \text { if the corresponding } \lambda_{\xi}^{1}, \lambda_{\xi}^{4}, \text { or } \lambda_{\xi}^{5} \\
& \text { eigenvalue evaluated at } i+\frac{1}{2}, j, k
\end{aligned} \quad \text { is }>0.0 .
$$

or

$$
\begin{aligned}
\hat{Q}_{i+\frac{1}{2}, j, k}^{n}=2 Q_{i+1}^{n}-Q_{i+2, j, k}^{n} \quad & \text { if the corresponding } \lambda_{\xi}^{1}, \lambda_{\xi}^{4}, \text { or } \lambda_{\xi}^{5} \\
& \text { eigenvalue evaluated at } i+\frac{1}{2}, j, k \\
& \text { is } \leq 0
\end{aligned}
$$

and similariy for $\hat{Q}_{i-\frac{1}{2}, j, k}^{n}$. Again, the same is dane for $\hat{Q}_{i, j \pm \frac{1}{2}, k}^{n}$ and $Q_{1, j, k+1 / 2}^{n}$ by interrogating the appropriate n or g eigenvalues.

Although the algortthu given by Eqs. (3.9) and (3.10) is an extension to three dimensions of that used in Ref. 13 for two dimensions, the interrogation of eigenvalues differs significantly. Three methods were tried in Ref. 13 to handle the computation of flow variables at cell faces when eigenvalues were of different sign on either side of

ORICHAR PROW OF POOR QUALITY

the cell face. The approach taken in the present scheme is to compute elgenvalues at cell faces rather than at cell centers as illustrated in Fig. 2 on a constant ζ lake The difficulty assactated with eigenvalues changing sign is thus eliminated. This seens a nataral approach because the use of Eq. (2.29) in the finite volume discretiaed equations (Eq. (3.2)), requires that eigenvalues be know at cell faces. The digenvalues are computed by averaging the information on either side of a cell face that is necessary for their computation according to Eq. (2.13). Then, depending on the sign of the eigenvalues, the information necessary to compute the remaining terms in the split vectors given by Eq. (2.29) for use in the algorithu given by Eqs. (3.9) and (3.10), is determined by extrapolation from the appropriate direction.

The time step $\Delta \tau_{1, j, k}$ is determined from

$$
\begin{equation*}
\Delta \tau_{i, j, k}=\frac{\Delta \tau_{i, j, k}^{\xi} \Delta \tau_{i, j, k}^{\eta} \Delta \tau_{i, j, k}^{\zeta}}{\Delta \tau_{i, j, k}^{\xi} \Delta \tau_{i, j, k}^{\eta}+\Delta \tau_{i, j, k}^{\xi} \Delta \tau_{i, j, k}^{\zeta}+\Delta \tau_{i, k, k}^{n} \Delta \tau_{i, j, k}^{\zeta}} \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \tau_{x, j, k}^{k}=\frac{\text { CFL } \Delta k}{\max _{\ell}\left|\lambda_{k}^{\ell}\right|} \tag{3.12}
\end{equation*}
$$

for $k=\xi, \eta$, and ζ. Because the eigenvalues are computed at cell faces rather than cell centers, λ_{k}^{ℓ} is the average of the ekgenvalues on cell faces in the $k=$ constant computational planes (where $k=\xi, \eta$, or ζ), and ℓ is efgenvalue 4 ox 5 because one of these will always have the maximum absolute value. To accelerate convergence for steady-state solutions the maximum allowable time step in each valume is used where CFL ≤ 2.

For the computation of the first points inside the couputational domain, the scheme is only first order accurate and stable for a CFL of 1. The time steps at these ourside points are, therefore, decreased by a factor of 2.
OF FCO? \% वoxy

IV. BOUNDARY CONDITIONS

To derive the characteristic variable boumdary conditions, the Euler equations need to be cast in characteristic variable form. Therefore, the characteristic variable form of the equations is derived first, followed by the derivation of the boundaxy conditions for the specific cases of supersonic and subsonic inflow and outflow, and impermeable surfaces

4.1 Characteristic variables

Considex the nonconservative form of the Euler equations given by Eq. (2.6). Using Eq. (2.18) in Eq. (2.6), and mulciplying Eq. (2.6) on the left by $\mathrm{P}_{\mathrm{k}}^{-1}$, gives

$$
P_{k}^{-1} \frac{\partial q}{\partial \tau}+p_{k}^{-1} p_{k} \Lambda_{k} p_{k}^{-1} \frac{\partial q}{\partial k}+p_{k}^{-1} p_{m} \Lambda_{m} p_{m}^{-1} \frac{\partial q}{\partial m}=0
$$

where $k=\xi, \eta$, or ζ_{z} and m includes the remaining two curvilinear coordinates out of the set ξ, η, or ζ where $m \neq k$. Therefore, there is a two-term surmation on m in the third term in Eq. (4.1). Define the third term in Eq. (4.1) as

$$
\begin{equation*}
S_{k, m}=p_{k}^{-1} \mathrm{p}_{\mathrm{m}} \Lambda_{\mathrm{m}} \mathrm{p}_{\mathrm{m}}^{-1} \frac{\partial \mathrm{q}}{\partial \mathrm{~m}} \tag{4.2}
\end{equation*}
$$

with the two-term sumation on m understood. Equation (4.1) can be written

$$
\begin{equation*}
p_{k}^{-1} \frac{\partial q}{\partial \tau}+\Lambda_{k} p_{k}^{-1} \frac{\partial q}{\partial k}+s_{k, m}=0 \tag{4.3}
\end{equation*}
$$

Consider $\mathrm{P}_{\mathrm{k}}^{-1}$ to be a constant matrix denoted as $\mathrm{P}_{\mathrm{k}, \mathrm{o}}^{-1}$. Then Eq. (4.3) can be written

$$
\begin{equation*}
\frac{\partial\left(P_{h, o}^{-1} q\right)}{\partial \tau}+\Lambda_{k} \frac{\partial\left(P_{k, o}^{-1} q\right)}{\partial k}+s_{k, m}=0 . \tag{4.4}
\end{equation*}
$$

Defining the characteristic vector, W_{k}, as

$$
\begin{equation*}
w_{k}=p_{k, o}^{-1} q \tag{4.5}
\end{equation*}
$$

Eq. (4.4) becomes

$$
\begin{equation*}
\frac{\partial W_{k}}{\partial \tau}+\Lambda_{k} \frac{\partial W_{k}}{\partial k}+S_{k, m}=0 \tag{4.6}
\end{equation*}
$$

The elements of the characteristic vector, W_{k}, are called characteristic variables, and are denoted by $w_{k, i}$.

The characteristic variables, $w_{k, i}$, are determi:ed using Eq, (4.5). The vector q is

$$
q=J[p, u, v, w, p]^{T}
$$

and the matrix $\mathrm{P}_{\mathrm{k}, \mathrm{o}}^{-1}$ is given by Eqs. (2.23) where the variables ρ and c (speed of sound) in Eq. (2.23) are denoted ρ_{o} and c_{c} to indicate a reference condition. Using q and $p_{k, 0}^{-1}$ in Eq. (4.5), the elenents of the characteristic vector

$$
\begin{equation*}
w_{k}=\left(w_{k, 1}, w_{k, 2}, w_{k, 3}, w_{k, 4}, w_{k, 5}\right)^{T} \tag{4.7}
\end{equation*}
$$

are

$$
\begin{align*}
& w_{k, 1}=\frac{J}{|\nabla k|}\left[k_{x}\left(\rho-\frac{p}{c_{o}^{2}}\right)+k_{z} v-k_{y} w\right] \tag{4.8a}\\
& w_{k, 2}=\frac{J}{|\nabla k|}\left[k_{y}\left(\rho-\frac{p_{2}}{c_{0}}\right)-k_{z} u+k_{x} w\right] \tag{4.8b}\\
& w_{k, 3}=\frac{J}{|\nabla k|}\left[k_{z}\left(\rho-\frac{p}{c_{0}^{2}}\right)+k_{y} u-k_{x} v\right] \tag{4.8c}
\end{align*}
$$

$$
\begin{gather*}
\begin{array}{c}
\text { Ontaind. } \\
\text { of poon } \\
w_{k, 4}=\frac{J}{|\nabla k|}-\frac{1}{\sqrt{2}}\left[\frac{p|\nabla k|}{p_{0} c_{0}}+\left(k_{x} u+k_{y} y+k_{z} w\right)\right]
\end{array} \\
w_{k, 5}=\frac{3}{|\nabla k|} \frac{1}{\sqrt{2}}\left[\frac{p|\nabla k|}{p_{0} c_{0}}-\left(k_{x} u+k_{y} w+k_{2} w\right)\right]
\end{gather*}
$$

The characteristic variables correspond in order to the dgenvalues

$$
\begin{align*}
& \lambda_{k}^{1}=k_{x} u+k_{y} v+k_{2} w=\theta_{k} \tag{4,9a}\\
& \lambda_{k}^{2}=\theta_{k} \tag{4,9b}\\
& \lambda_{k}^{3}=\theta_{k} \tag{4,9c}\\
& \lambda_{k}^{4}=\theta_{k}+c|\nabla k| \tag{4.9d}\\
& \lambda_{k}^{5}=\theta_{k}-c|\nabla k| \tag{4.9e}
\end{align*}
$$

4.2 Characteristic Variable Boundary Cond wions

The boundary conditions are derived below assuming locally onedimensional flow. This assunption is probably betcer for far fleld boundary conditions than for boundary conditions applied on or nesr surfaces. However, numerical experiments usiag zero pressure gradient, extrapolation, vonnal pressure gradient, and locajly one-dimenstonsa characteristic variable boundary conditions, indicate that similar results can be obtained using any of these four methods for inpermeable wall boundary conditions as long as the grid is not extraordinarily coarse. For the computations performed thus far, the locally one-dimensional characteristic variable fmpermeable wall boundary conditious are to be preferred over the other three methods; hence, this method is developed
below. (Further investigations should be performed without the
locally one-dimensional assumption, however.)
By neglecting the directions in Eq, (a.6) one obtains

$$
\begin{equation*}
\frac{\partial W_{k}}{\partial \tau}+\Lambda_{k} \frac{\partial W_{k}}{\partial k}=0 \tag{4.10}
\end{equation*}
$$

This equation can be written

$$
\begin{equation*}
\frac{d W_{k}}{d r}=\frac{\partial W_{k}}{\partial t}+A_{k} \frac{\partial W_{k}}{\partial k}=0 \tag{4.11}
\end{equation*}
$$

where

$$
\frac{d k}{d \tau}=\Lambda_{k}
$$

The eigenvalues, thexefore, indicate a direction in computational space. According to Eq. (4.11) one particular eigenvalue is associated With one particular characteristic varisble. Each efgenvalue, $\lambda_{k}{ }^{2}$ indicates the direction across the $k=$ constant computational surface that information contained in the associnted characteristic variable, $W_{k, i}$, propegates. This result is the basis for decermining the boundary conditions referred to here as characterdstic variable boundary conditions.

Boundary conditions are now developed for the following five specific cases

1. supersonic inflow
2. supersonic outflow
3. subsonic inflow
4. subsonic outflow
5. impermeable surface

Supersonic Inflow

This is a situation where all eigenvalues have the same sigu. Because flow is coming into the computational domaln, all flow variables are specified.

Supersonic Outflow

This is another situation where all eigenvaluas have the same sign. Because flow is leaving the computational domaln all flow variables at the boundary must be obtained from the solution in the computational domain. All flow variables axe extrapolated from inside the computational domain to the boundary.

Subsonfc Inflow

This situation is charactarized by four eigenvalues of the name stgn and one of difrering sign. For the subsonic inflow case shown lis kig. 3a with the flow in ie direction of lncxeasing computacjonal coordinate k, the first four eigenvalues are positive and the firth is negarive. For the subsonic inflow case shown in Flg. 36 with the flow the the direction of decreasing computational coordinate k, the first three and fifth eigenvalues are negative and the fourth eigezzalue is positive. For a totally general three dimensional code either situation fin Fig. 3 could occur. Each possiblity in Fig. 3 is taken into account in che following derivation. Using the characteristic vaxables given by Eqs. (4.3) one obtains

$$
\begin{align*}
& {\left[k_{x}\left(\rho-\frac{p}{c_{0}^{2}}\right)+k_{z} v-k_{y} w\right]_{a}=\left[k_{x}\left(\rho-\frac{p_{1}^{2}}{c_{0}^{2}}\right)+k_{z}^{y}-k_{y} w\right]_{b}} \tag{4.22a}\\
& {\left[k_{y}\left(\rho-\frac{p}{c_{0}^{2}}\right)-k_{z} u+k_{x}{ }^{w}\right]_{a}=\left[k_{y}\left(\rho-\frac{p}{2}\right)-k_{z} w+k_{x} w\right]_{b}} \tag{4.226}
\end{align*}
$$

$$
\begin{align*}
& {\left[k_{z}\left(\rho-\frac{p}{2}\right)+k_{y}^{u}-k_{x} v\right]_{a}=\left[k_{z}\left(\rho-\frac{p}{2}\right)+k_{y}^{u}-k_{x} v\right]_{b}} \tag{4.12c}\\
& {\left[\frac{p|\nabla k|}{\rho_{0} c_{0}} \pm\left(k_{x} u+k_{y} v+k_{z} w\right)\right]_{a}=\left[\frac{p|\nabla k|}{\rho_{0} c_{0}} \pm\left(k_{x} u+k_{y} v+k_{z} w\right)\right]_{b}} \tag{4.12d}\\
& {\left[\frac{p|\nabla k|}{\rho_{0} c_{0}}:\left(k_{x} u+k_{y} v+k_{z} w\right)\right]_{\ell}=\left[\frac{p|\nabla k|}{\rho_{0} c_{0}} \mp\left(k_{x} u+k_{y} v+k_{z} v\right)\right]_{b}} \tag{4.120}
\end{align*}
$$

where the plus gigns in Eq. (4.12d) and the negative signs in Eqs. (4. 12e) refer to the situation in Fig. $3 a$, and the other sign option refers to the situation in Fig. 3 b . The subscript a refers to approaching the boundary, subscipt b refers to the boundary, and subscript ℓ xefers to J.eaving the boundary (see fig. 3). Note from the equations for k_{x}, k_{y}, and k_{z} given below Eq. (2,2) that the products $J k_{x}, J k_{y}$, and $J k_{2}$ are components of acea vectors. The computer code actually uses thase components of cell surface areas, and because the boundary of interest In Eqs. (4.12) Is the cell face containing the boundary point b, the area vector components of interest correspond to this cell face. The metrics at points a and ℓ axe taken to be the same as those at point b, and the coefficients of the bracket terms in Eqs. (4.8) are not carried through the manipulation of the equations. The itnearisation point o is taken to be on the boundary.

$$
\begin{align*}
& \text { Equations (4.12d) and }\left(f_{1}, 12 e\right) \text { can te combined to obtain } \\
& p_{b}=J_{2}\left\{p_{a}+p_{\ell} \pm p_{0} c_{o}\left(k_{X}\left(u_{a}-u_{\ell}\right)+\hat{k}_{y}\left(v_{a}-v_{\ell}\right)+\ddot{k}_{2}\left(w_{a}-w_{\ell}\right)\right\}\right) \tag{4.13a}
\end{align*}
$$

where $\tilde{k}_{x}, \tilde{k}_{y}$, and \dot{k}_{z} are deflned by Eqs. (2.15). Equations (4.12a), $(4.12 b),(4.12 c)$, and $(4.12 d)$ can be solved for the four remalning unknowa boundary values, giving

$$
\begin{align*}
& \rho_{b}=\rho_{a}+\frac{p_{b}-p_{a}}{c_{o}^{2}} \tag{4,13b}\\
& u_{b}=u_{a} \pm \tilde{k}_{x} \frac{p_{a}-p_{b}}{\rho_{o} c_{o}} \tag{4.13c}\\
& v_{b}=v_{a} \pm \tilde{k}_{y} \frac{p_{a}-p_{b}}{\rho_{o} c_{o}} \tag{4.13d}\\
& w_{b}=w_{a} \pm \tilde{k}_{2} \frac{p_{a}-p_{b}}{\rho_{o} c_{o}} \tag{4.13e}
\end{align*}
$$

The plus sigin option in Eqs. (4.13) refers to the computationsl coordinate and inflow situacion depicted in Fig. 3a, and the negative stgn option refers to Fig. 3b. There is no sign option in Fig. (4. 13b). Note that these signs correspond to the sign of the first three eigenvalues, and hence this is a means of writing the code for general applications with arbitrary orientation of the computation coordinates. The point a is outside the computational domain, point b is on the computational. boundary, and potat: ℓ is inside the computational domain.

Subsonic Outflow

This situation is also charactexized by four eigenvalues of the same sign and one of opposite sign. The development of subsonic outflow boundary conditions is similar to that for subsonice inflow, and Fig. 3 can be used again for illustration. However, for subsonie outflow only one charactertstic variable is specified and foum are determined from information inside the computational donain, whereas, for subsonic inflow four characteristic variables were specified and one was determined from information inside the computational domain. Using the characteristic varlables given by Eqs. (4.8), and the signs of the eigenvalues given by Eqs. (4.9) for the sleuations in Fig. 3, one obtains a set of
equations identical to Eqs. (4.12). Note, however, that although the equations are identical, point a is now inside the computational domain and point ℓ is ouside the computational domain; whereas, just the opposite was true for subsonic inflow.

Because the equations for subsonic outclow are the same as Eqs. (4. 12), they have the same formal solution. However, because one characteristic variable is specifled, the resulting boundary conditions differ somewhat from the subsonic inflow boundary conditions. Consider Eq. (4.12e). By specifying that the outflow is straight, then $p_{b}=P_{\ell}$ according to Eqs. (4:12e). The remaining four equations can be solved for the renalning four variables giving

$$
\begin{align*}
& p_{b}=p_{\ell} \tag{4.14a}\\
& \rho_{b}=\rho_{a}+\frac{p_{b}-p_{a}}{c_{o}^{2}} \tag{4.14b}\\
& u_{b}=u_{a} \pm k_{x} \frac{p_{a}-p_{b}}{\rho_{o} c_{o}} \tag{4.14c}\\
& v_{b}=v_{a} \pm k_{y} \frac{p_{a}-p_{b}}{\rho_{o} c_{o}} \tag{4.14d}\\
& w_{b}=w_{a} \pm k_{z} \frac{p_{a}-p_{b}}{\rho_{o} c_{o}} \tag{4.14e}
\end{align*}
$$

The plus and minus signs have the same meaning here as for Eqs. (4. 13). For external flow computations, P_{ℓ} could be the ambient static pressure, p_{∞}.

Impermeable Surface

For a boundary across which there is no flow the first three eigenvalues given by Egro4s) are zero, the fourth is positive, and the fifth is negative. One condition must, therefore, be specified, The condition specified is that there is no flow across the boundary. The following relations anong the chaxacteristic variables are used to determine the boundary condlitions

$$
\begin{align*}
& {\left[k_{x}\left(\rho-\frac{p}{c_{0}^{2}}\right)+k_{z} v-k_{y}^{w}\right]_{b}=\left[k_{x}\left(\rho-\frac{p}{c_{0}^{2}}\right)+k_{z} v-k_{y} w\right]_{r}} \tag{4.15a}\\
& {\left[k_{y}\left(\rho-\frac{p_{2}}{c_{0}^{2}}\right)-k_{z} u+k_{x} w\right]_{b}=\left[k_{y}\left(\rho-\frac{p_{2}^{2}}{c_{0}^{2}}\right)-k_{z} u+k_{x} w\right]_{r}} \tag{4.15b}\\
& {\left[k_{z}\left(\rho-\frac{p}{c_{0}^{2}}\right)+k_{y}^{u}-k_{x} v\right]_{b}=\left[k_{z}\left(\rho-\frac{p}{c_{0}^{2}}\right)+k_{y}^{u}-k_{x} v\right]_{r}} \tag{4.15c}\\
& {\left[k_{x} u+k_{y} v+k_{z} w\right]_{b}=0} \tag{4,15d}\\
& {\left[\frac{p|\nabla k|}{\rho_{0} c_{0}} \mp\left(k_{x} u+k_{y} v+k_{z} w\right)\right]_{b}=\left[\frac{p\left|\nabla_{k}\right|}{\rho_{0} c_{0}} \mp\left(k_{y_{k}} s+k_{y} v+k_{z} w\right)\right]_{r}} \tag{4.15e}
\end{align*}
$$

The subscript refers to a reference value, which is selected as the center of the first cell from the boundary. The minus and plus signs in Eq. (4.15e) correspond to the location of the point r. If the point 15 is in the positive k direction from the boundary then the minus sign is used in Eq. (4.15e), and if it is in the minus direction then the plus sign is used.

Finite volume codes only require the pressure at an impermeable boundary and consequently Eqs. (4.15a), (4.15b), and (4.15c) are not needed. However, to factatiant me handing of points near boundaries and aid in code vectorization, phantom points are used in the present version of the code. The use of phantom points requires information of variables other than pressure to ensure, for example, zero flow across an impermeable boundary. Such information can be obtained from Eqs. (4.15).

Equations (4.15d) and (4.15e) can be solved for p_{b}. Equations (4.15a) - (4.15d) can then be solved for the remaining four variables. The solution of Eqs. (4.15) is

$$
\begin{align*}
& p_{b}=p_{r}+\rho_{o} c_{o}\left(\tilde{k}_{x} u_{r}+\tilde{k}_{y} v_{r}+\tilde{k}_{z} w_{x}\right) \tag{4.36a}\\
& \rho_{b}=\rho_{r}+\frac{p_{b}-p_{x}}{c_{0}^{2}} \tag{4.16b}\\
& u_{b}=u_{r}-\tilde{k}_{x}\left(\tilde{k}_{x} u_{r}+\tilde{k}_{y} v_{x}+\tilde{k}_{z} w_{r}\right) \tag{4.16c}\\
& v_{b}=v_{r}-\tilde{k}_{y}\left(\tilde{k}_{x} u_{x}+\tilde{k}_{y} v_{r}+\tilde{k}_{z} w_{r}\right) \tag{4.16~d}\\
& w_{b}=w_{r}-\tilde{k}_{z}\left(\tilde{k}_{x} u_{r}+\tilde{k}_{y} v_{r}+\tilde{k}_{z} w_{r}\right) \tag{4.16e}
\end{align*}
$$

where the point x is the center of the first celi fron the boundary and the minus sign in Eq. (4.16a) is used if r is in the positive k direction from the boundary, and the plus sign is used if x is in the negative k direction from the boundary.

4.3 Phantom Points

Phantom points are denoted by the subscript p. The points are obtained from the relations

$$
\begin{align*}
p_{p} & =2 p_{b}-p_{i n} \\
\rho_{p} & =2 \rho_{b}-p_{\text {in }} \tag{4.17a}\\
u_{p} & =2 u_{b}-u_{i n} \tag{4.17b}\\
v_{p} & =2 v_{b}-v_{i n} \tag{4.17c}\\
w_{p} & =2 w_{b}-w_{i n} \tag{4.17d}
\end{align*}
$$

where the subscript in refers to the center of the first cell inside the computational domain and can be any of the points a, ℓ, or x used in this section. For example, the phantom points for an impermeable surface are

$$
\begin{align*}
& p_{p}=p_{r}+2 \rho_{o} c_{o}\left(\tilde{k}_{x} u_{r}+\tilde{k}_{y} v_{r}+\tilde{k}_{z} w_{r}\right) \tag{4.18a}\\
& \rho_{p}=\rho_{r}+\frac{2\left(p_{b}-p_{r}\right)}{c_{o}^{2}} \tag{4.18b}\\
& u_{p}=u_{x}-2 \tilde{k}_{x}\left(\tilde{k}_{x} u_{r}+\tilde{k}_{y} v_{x}+\tilde{k}_{z} w_{r}\right) \tag{4.18c}\\
& v_{p}=v_{r}-2 \tilde{k}_{y}\left(\tilde{k}_{x} u_{r}+\tilde{k}_{y} v_{r}+\tilde{k}_{z} w_{r}\right) \tag{4.18d}\\
& w_{p}=w_{x}-2 \tilde{k}_{z}\left(\tilde{k}_{x} u_{r}+\tilde{k}{ }_{y} v_{x}+\tilde{k}_{z} w_{r}\right) \tag{4.18e}
\end{align*}
$$

The velocity vector components are the same as those used by Jacocks and Kneile (Raf. 14).

V. RESULTS

The computer program written to solve the three-dimensional unsteady Euler equations is reserred to as the SKOAl code. SKOAL is an acronym for nothing.

To investigate the results of this code a nomerical solurion was obtained for the ONERA M6 wing ar $M_{\infty}=0.84$ and a 3.06°. The pressure distribution is shown in Fig. 4. This solution is compared co a solution from the FLO57 code in Fig. 5. Identical $96 \times 16 \times 16$ meshes were used for both solutions in Fig. 5. The major difference between the two solutions occurs in the outboard region of the wing. More detailed comparisone between the solutions, including comparisons with experimental data (Ref. 15), are given in Fig. 6. Compatisons of spanwise distributions of lift and drag are given in Fig. 7. The FLO57 code gives a 4% higher value of lift to drag ratio than the SKOAL code.

The number of supersonic points (NSUP) is sometimes used as a crude indication of convergence. The Fl. 057 solucion was obtained by first using a $48 \times 8 \times 8$ grid and then using this crude grid solution as Initial conditions for the $96 \times 16 \times 16$ grid solution. Hence the NSUP corresponding to an tmpulsive start for the $96 \times 16 \times 16$ gxid was not available from the FloOS7 code for compurison with the SKOAL code. In order to compare the NSUP history between the two codes, a $48 \times 8 \times 8$ grid solution was obtained using the SKOAL code. These results are presented In Fig. 8. The FLO57 code is stable for a CFL of 2.8 using a fourstage Runge-Kutta scheme, whereas, the SKOAL code is stable for a CFI of 2.0 using the predictor-corrector scheme. It is interesting to note
that the number of cycles required for the NSUP to become constant using FL0.57 is 246 , whereas, the number of cycles required for the NSUP to become constant using SKOAL is 325 . The ratio of these two numbers is essentially the inverse rato of CFL numbers. Another way of looking at this is to note that FL057 passes through a flux balance routine four times during each cycle, whereas SKOAL passes through a flux balance routine three time during each cycle. A comparison of the ratio of the NSUP to the final number of NSUP (denoted as NSUP/ (SUR) ${ }_{c}$) as a function of flux balances is given in Fig. y. Based on the number of flux balances required to reach steady state for this solution these methods are operating identically. However, one pass through a dissipation routine (which is similar in terms of computer resources to an extra pass through the flux balance routine) is required in the FLO 57 code which is not required in the SROAL code because no additional dissipation terms were included. The important comparison, however, ids the number of computer resource units required to reach steady state. This depends on the coding, vectorization, storage, etc., of earth code on the same machine. Such a comparison cannot presently be made. As the codes now stand, the Flo st code is probably at least twice as fast as the SKOAL code per cycle. However, based on Fig. 9, It is anticipated that the SKOAL code can be improved.

Numerous other results have been obtained using the SkOAL code for various two-and three-dimensional geometries, and for subsonic, transonic, and supersonic flow. The ONERA wing, however, is the only solution obtained thus far that can be compared to another Euler code solution for which the same mesh was used.

VI. CONCLUDING REMARKS

A method was presented for solving the three-dimensional unsteady Euler equations based on flux vector splitting. The equations were cast in curvilinear coordinates and a finite volume diacretization was used for handing arbitrary geometries. The discretized equations were solved using an explicit upwind second-order predictor-corrector scheme that is stable for a CFL of 2. No additional disstpation termes were included in the scheme. Local time stepping was used to accelerate convergence forsteady-state problems. Charactersatic variable boundary conditions were developed and applied in the far field and at impermeable surfaces. Numertcal results were obtained and compared with results from the FLO57 code and experinental data for the ONERA N6 wing at $M_{\infty}=0.84$ and $\alpha=3.06^{\circ}$.

1. Whitfield, D. L. and Jameson, A., "Three- Dimensional Euler Equation Simulation of propeller-Wing Interaction in Transonic Flo:," AlAA Paper 83-0236. January 1983.
2. Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes," aIAA Papex No, 81-1259, June 1981.
3. Schmidt, W., Jameson, A., and Whitfield, D. L., "Finite-Volume Solutions to the Euler Equations in Transonic Flow," Journal of Aircraft, Vol. 20, No. 2, February 1983, ap. 127-133.
4. Swafford, T. W., "Three-Dimensional, Time-Dependent, Compressible, Turbulent, Integral Boundary-Layer Equations in General Curvilinear Coordinates and Their Numerical Solution, "Ph.D. Dissertation, Mississippi State University, August, 1983.
5. Steger, J. L. and Warming, R. F., "Flux Vector Splitting of The Inviscid Gasdynamic Equations with Application to FiniteDifference Methods," Journal of Computational Physics, Vol. 40 , 1981, pp. 263-293.
6. Warming, R. F., Beam, R. M., and Hyett, Bu. I., "Diagonalization and Simultaneous Symmetrization of the Gasmynamic Matricas," Mathematic of Computation, Vo1. 20, No. 132, October 1975, pp. 1037-1045.
7. Pulliam, T. H. and Chaussee, D. S., "A Diagonal Form of an Implicit Approximate-Factorization Algorithm," Joormal of Computational Physics, Vol. 39, 1981, pp. 347-363.
8. Nobel, B. and Daniel, J. W., Applied Linear Algebra. Second Edition, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977.
9. Olnsted, J. M. H., Real Variables. Appleton-Century-Crofts, Inc., New York, 1059.
10. Rekils, R. P. and Thomas, P. D. "Shock-Capturing Algoxithm for the Naviex-Stokes Equations," AIAA Journal, Vol. 20, No. 9, September 1982, pp. 1212-1.218.
11. Thomas, P. D. and Lombard, C. K., "Geometric Conservation Law and Xts Application to Flow Computations on Moving Grids," AIAA Journal Vol. 17, No. 10, October 1979, pp. 1030-1031
12. Warming, K. F. and Beam, K. M., "Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows," AIAA Journal, Vol. 14, No. 9, September 1976, pp. 1241-1249.
13. Deese, J. E., "Numerical Experiments with the Srlit-Flux-Vector Form of the Euler Equations," ATAA Paper No. 83-01.22, January 1983.
14. Jacocks, J. L. and Kneil.e, K. R., 'Computation of Three-Dimerisional Time-Dependent Flow Using the Euler Equations," AEDC-TR-80-49, July, 1981. \cdots
15. Schmitt, V. and Charpin, F., "Pressure Distriubtions on the ONERA M6-Wing at Transonic Nach Numbers," Experimental Data Base for Computer Prograri Assessment, AGARD AR-138, 1979.
 of pocis gunlity

Fig. 1 Computational Grid,

ORIGINAL FRSE E
OF P JOR QUALTE
OF P JOR QUALIT

Fig. 2 Location of Interrogated Eigenvalues.

Fig. 5 Pressure Distribution Comparisons on the onera wh Hing for $M_{\infty}=0.84$ and $\alpha=3.06^{\circ}$,

Fig. 6 Numerical and Experinental Pressure Distributions at Various Span Locations.

ofamed

Fig. 6 Continued

OFIGNAL PRER B OF POOR QUALITY

Fig. 6 Continued

Fig. 6 Concluded

Semi-Span location,n
ELg. 7 Spamvise Lift and Dras Distributton.

ONEDA MO WING

$M=0.34$
$\alpha=3.06^{\circ}$
--- FL057 (48x8ㅈ8)

- SKOAL $(48 \times 8 \times 8)$

Fig. 8. Number of Supersonte Poitite (NSUP) as a Funceton of Cycles.

Fig. 9 Nuber of Suparsonte Potnts (NSUP) as a Function of Flus Balances.

End of Document

